
Intelligent Web Agents that Learn to Retrieve and
Extract Information

Tina Eliassi-Rad1 and Jude Shavlik2

1Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, Box 808, L-560, Livermore, CA 94551, USA.
Email: eliassi@llnl.gov.†

2Computer Sciences Department, University of Wisconsin-Madison,
1210 West Dayton Street, Madison, WI 53717, USA.
Email: shavlik@cs.wisc.edu.‡

Abstract. We describe systems that use machine learning methods to retrieve
and/or extract textual information from the Web. In particular, we present our
Wisconsin Adaptive Web Assistant (WAWA), which constructs a Web agent by
accepting user preferences in form of instructions and adapting the agent’s
behavior as it encounters new information. Our approach enables WAWA to
rapidly build instructable and self-adaptive Web agents for both the information
retrieval (IR) and information extraction (IE) tasks. WAWA uses two neural
networks, which provide adaptive capabilities for its agents. User-provided
instructions are compiled into these neural networks and are modified via training
examples. Users can create these training examples by rating pages that WAWA
retrieves, but more importantly our system uses techniques from reinforcement
learning to internally create its own examples. Users can also provide additional
instruction throughout the life of an agent. Empirical results on several domains
show the advantages of our approach.

Keywords. Instructable and adaptive software agents, Web mining, machine
learning, neural networks, information retrieval, information extraction

1 Introduction
The rapid growth of information on the World Wide Web has boosted interest in
using machine learning techniques to solve the problems of retrieving and
extracting textual information from the Web [43,47]. The information-retrieval

† This work was done while the first author was at the Computer Sciences Department of
the University of Wisconsin-Madison.
‡ This research was supported in part by NLM Grant 1 R01 LM07050-01, NSF Grant IRI-
9502990, and UW Vilas Trust.

mailto:eliassi@llnl.gov
mailto:shavlik@cs.wisc.edu

(IR) learners attempt to model a user’s preferences and return Web documents
“matching” those interests. The information-extraction (IE) learners attempt to
find patterns that fill a user-defined template (or questionnaire) with correct pieces
of information.

We discuss several noted IR and IE learners in this chapter. Among the IR
learners, many different machine learning techniques have been used ranging from
a Bayesian classifier in Syskill and Webert [30] to our use of theory-refinement
and reinforcement learning in WAWA-IR [10,11,40,41]. The breath of investigated
approaches for IE learners basically falls into three categories: (i) systems that use
hidden Markov models [2,15,20,31,38], (ii) systems that use relational learners
[5,14,42], and (iii) systems that use theory-refinement techniques (such as our
WAWA-IE) [10,12,13].
 Our system, WAWA (short for Wisconsin Adaptive Web Assistant), interacts with
its user and the Web to build an intelligent agent for retrieving and/or extracting
information. It has two sub-systems: (i) an information retrieval sub-system,
called WAWA-IR; and, (ii) an information extraction sub-system, called WAWA-IE.
WAWA-IR is a general search-engine agent, which can be trained to produce
specialized and personalized IR agents. WAWA-IE is a general extractor system,
which creates specialized agents that extract pieces of information from
documents in the domain of interest.
 WAWA builds its agents based on ideas from the theory-refinement community
within machine learning [28,29,45]. First, the user-provided domain knowledge is
“compiled” into “knowledge based” neural networks [45]. Then, this prior
knowledge is refined whenever training examples become available. By using
theory refinement, we are able to find an appealing middle ground between non-
adaptive agent programming languages and systems that solely learn user
preferences from training examples. On one hand, utilizing user’s prior
knowledge enables WAWA’s agents to perform reasonably well initially. On the
other hand, since WAWA’s agents are learners,1 they do not rely on the user’s prior
knowledge to be correct.
 This chapter is organized as follows. We present the fundamental operations of
WAWA’s agents in Section 2. WAWA’s information-retrieval (IR) system along
with other IR learners are discussed in Section 3. In Section 4, we present
WAWA’s information-extraction (IE) system and other notable IE systems.
Section 5 describes some future directions. Finally, Section 6 summarizes the
material in this chapter.

2 The Core of WAWA Agents
In this section, we briefly review the fundamental operations of a WAWA agent,
which are used in both the WAWA-IR and the WAWA-IE agents [11].

1 This learning ability makes WAWA’s agents arguably “intelligent” since they can adapt
their behavior due to both users’ instructions and the feedback they get from their
environments.

 The knowledge base of a WAWA agent is centered around two basic functions:
SCORELINK and SCOREPAGE (see Figure 1). If given highly accurate such
functions, standard heuristic search would lead to effective retrieval of text
documents: the best-scoring links would be traversed and the highest-scoring
pages would be collected.

Link
Score?

Page
Score?

…

Fig. 1. Central Functions of WAWA’s Agents Score Web Pages and Hyperlinks

 Users are able to tailor an agent’s behavior by providing advice about the above
functions. This advice is “compiled” into two “knowledge based” neural networks
[45] implementing the functions SCORELINK and SCOREPAGE. These functions,
respectively, guide the agent’s wandering within the Web and judge the value of
the pages encountered. Subsequent reinforcements from the Web (e.g.,
encountering dead links) and any ratings of retrieved pages that the user wishes to
provide are, respectively, used to refine the link- and page-scoring functions.
 A WAWA agent’s SCOREPAGE network is a supervised learner [26]. That is, it
learns through user-provided training examples and advice. A WAWA agent’s
SCORELINK network is a reinforcement learner [44]. This network automatically
creates its own training examples [40,41], though it can also use any user-provided
training examples and advice. Hence, our design of the SCORELINK network has
the important advantage of producing self-tuning agents since training examples
are created by the agent itself.
 The user-provided instructions is mapped into the SCOREPAGE and SCORELINK
networks using a Web-based language, called advice. An expression in our advice
language is an instruction of the basic form:

when preconditions then actions
The preconditions refer to aspects of the contents and structure of Web pages.
The actions specify the goodness of a page or a link when the preconditions are
met.
 WAWA extracts its input features from either HTML or plain-text Web pages.
These input features2 constitute the primitives in its advice language, which can be
combined through logical and numerical operators to create more complicated
advice constructs. Table 1 lists some of WAWA’s extracted input features. The
features anywhereOnPage(<word>) and anywhereInTitle(<word>) take a word
as input and return true if the word was on the page or inside the title of the page,
respectively. WAWA captures a large number of its features by sliding a fixed-

2 See Eliassi-Rad [10] for a full description of WAWA’s input features.

size3 window across a page one word at a time. In particular, WAWA defines most
of the features representing a page with respect to the current center of this sliding
window, e.g. the isNthWordInTitle(<N>, <word>) feature is true when the given
word is in the Nth word (from the left) on a page’s title. Moreover, WAWA also
has two bags of words of size 10 around the sliding window which allows it to
capture instructions such as when “Green Bay” is near “Packers” then show
page. Besides the input features related to words and their positions on the page, a
WAWA agent’s input vector also includes various other features, such as the length
of the page, the date the page was created and modified (should the page’s server
provide that information), whether the sliding window is currently inside
emphasized HTML text, the number of words in the title or URL, how many words
mentioned in advice are present in the title or URL, etc.

Table 1. Sample Extracted Input Features
anywhereOnPage(<word>)
anywhereInTitle(<word>)
 ⋅⋅⋅
isNthWordInTitle(<N>, <word>)
 ⋅⋅⋅
centerWordInWindow(<word>)
 ⋅⋅⋅
numberOfWordsInTitle()
numberOfAdviceWordsInTitle()
 ⋅⋅⋅
insideEmphasizedText()
timePageWasLastModified()

 A key feature of WAWA’s advice language is its ability to capture abstract
concepts (e.g., names) through variables. To understand how variables are used in
WAWA, assume that we wish to use the system to create a home-page finder. We
might wish to give such a system some (very good) advice like: When the title of
the page contains the phrase “?FirstName ?LastName ’s Home Page”, show me
the page. The leading question marks (?) indicate variables that are bound upon
receiving a request to find a specific person’s home page. The use of variables
allows the same advice to be applied to the task of finding the home pages of any
number of different people.
 Advice is compiled into the SCOREPAGE and SCORELINK networks using a
variant of the KBANN algorithm [45]. The mapping process is analogous to
compiling a traditional program into machine code, but our system instead
compiles advice rules into an intermediate language expressed using neural
networks. This provides the important advantage that our “machine code” can
automatically be refined based on feedback provided by either the user or the

3 Typically, the sliding window contains 15 words.

Web. Namely, we can apply the backpropagation algorithm [34] to learn from the
training set.

We will illustrate the mapping of an advice rule with variables through an
example, which also illustrates the powerful phrase4 construct in WAWA’s advice
language. Suppose we are given the following advice rule: When the phrase
“Professor ?FirstName ?LastName” is on the page, show me the page. During
advice compilation, WAWA maps the phrase by centering it over the sliding
window (Figure 2). In this example, our phrase is a sequence of three words, so it
maps to three positions in the input units corresponding to the sliding window
(with the variable ?FirstName associated with the center of the sliding window).

5 Score
Page

Bias
=12.5

5

5

5

…

…

Is it true that the word
at Left1InWindow is
“Professor”?

Is it true that the word
at Right1InWindow is
bound to ?LastName?

Is it true that the word
at CenterInWindow is
bound to ?FirstName?

Fig. 2. Mapping Advice into SCOREPAGE Network

The variables in the input units are bound outside of the network and the units
are turned on only when there is a match between the bindings and the words in
the sliding window. So, if the bindings are:

?FirstName ← “Joe”
?LastName ← “Smith”

then, the input unit “Is it true that the word at CenterInWindow is bound to
?FirstName?” will be true (i.e., set to 1) only if the current word in the center of
the window is “Joe.” WAWA then connects the referenced input units to a newly
created (sigmoidal) hidden unit, using weights of value 5. Next, the bias (i.e., the
threshold) of the new hidden unit is set such that all the required predicates must
be true in order for the weighted sum of its inputs to exceed the bias and produce
an activation of the hidden unit near 1. Some additional zero-weighted links are
also added to this new hidden unit, to further allow subsequent learning, as is
standard in KBANN. Finally, WAWA links the hidden unit into the output unit with
a weight determined by the rule’s action. The mapping of advice rules without
variables follows the same process except that there is no variable-binding step.

4 A phrase is a sequence of consecutive words.

3 Retrieving Information from the Web
Information retrieval (IR) systems take as input a set of documents (a.k.a. the
corpus) and a query (usually consisting of a bunch of keywords or keyphrases).
The ultimate goal of an IR system is to return all and only the documents that are
relevant to the given query. To achieve this goal, IR learners attempt to model a
user’s preferences and return Web documents “matching” those interests.
 This section describes our design for creating specialized/personalized
intelligent agents for retrieving information from the Web, an experimental study
of our system, and some other recently developed IR learners.

3.1 WAWA-IR

WAWA’s IR system is a general search-engine agent that through training can be
specialized/personalized. Table 2 provides a high-level description of WAWA-IR.

Table 2. WAWA’s Information Retrieval Algorithm
Unless they have been saved to disk in a previous session, create the ScoreLink
and ScorePage neural networks by reading the user’s initial advice (if any).

Either (a) start by adding user-provided URLs to the search queue; or (b)
initialize the search queue with URLs that will query the user’s chosen set of
Web search engine sites.

Execute the following concurrent processes.

Independent Process #1
While the search queue is not empty nor the maximum number of URLs visited,
• Let URLtoVisit = pop(search queue).
• Fetch URLtoVisit.
• Evaluate URLtoVisit using the ScorePage network.
• If score is high enough, insert URLtoVisit into the sorted list of best pages
 found.
• Use the score of URLtoVisit to improve the predictions of the ScoreLink
 network.
• Evaluate the hyperlinks in URLtoVisit using ScoreLink network (but, only
 score those links that have not yet been followed this session).
• Insert these new URLs into the (sorted) search queue if they fit within its
 max-length bound.

Independent Process #2
Whenever the user provides additional advice, insert it into the appropriate
neural network.

Independent Process #3
Whenever the user rates a fetched page, utilize this rating to create a training
example for the ScorePage neural network.

 The basic operation of WAWA-IR is heuristic search, with our SCORELINK
network acting as the heuristic function. Rather than solely finding one goal node,
we collect the 100 pages that SCOREPAGE rates highest. The user can choose to
seed the queue of pages to fetch in two ways. She can either specify a set of
starting URLs or provide a simple query that WAWA-IR converts into “query”
URLs. These “query” URLs are then sent to a user-chosen subset of selectable
search engine sites (currently ALTAVISTA, EXCITE, GOOGLE, HOTBOT, INFOSEEK,
LYCOS, TEOMA, and YAHOO).
 There are three ways to train WAWA-IR’s two neural networks: (i) system-
generated training examples, (ii) advice from the user, and (iii) user-generated
training examples.
 Before fetching a page P, WAWA-IR predicts the value of retrieving P. This
“predicted” value of P is based on the text surrounding the hyperlink to P and
some global information on the “referring” page (e.g., the title, the URL, etc).
After fetching and analyzing the actual text of P, WAWA-IR re-estimates the value
of P. Any differences between the “before” and “after” estimates of P’s score
constitute an error that can be used by backpropagation [34] to improve the
SCORELINK neural network.5

In addition to the above system-internal method of automatically creating
training examples, the user can improve the SCOREPAGE and SCORELINK neural
networks in two ways. One, the user can provide additional advice. Observing
the agent’s behavior is likely to invoke thoughts of good additional instructions.
A WAWA-IR agent can accept new advice and augment its neural networks at any
time. It simply adds to a network additional hidden units that represent the
compiled advice, a technique whose effectiveness was demonstrated on several
tasks [25]. Providing additional hints can rapidly and drastically improve the
performance of a WAWA-IR agent, provided the advice is relevant. Maclin and
Shavlik [25] showed that their algorithm is robust when given advice
incrementally. When “bad” advice was given, the agent was able to quickly learn
to ignore it.

Although more tedious, the user can also rate pages as a mechanism for
providing training examples for use by backpropagation. This can be useful when
the user is unable to articulate why the agent is misscoring pages and links. This
standard learning-from-labeled-examples methodology has been previously
investigated by other researchers, e.g., Pazzani et al. [30]. However, we
conjecture that most of the improvement to WAWA-IR’s neural networks,
especially to SCOREPAGE, will result from users providing advice. In our personal
experience, it is easy to think of simple advice that would require a large number
of labeled examples in order to learn purely inductively. In other words, one
advice rule typically covers a large number of labeled examples. For example, a
rule such as when (“404 file not found") then avoid showing page will cover all
pages that contain the phrase “404 file not found".

5 This type of training is not performed on the pages that constitute the initial search queue.

3.2 WAWA-IR: An Experimental Study

To evaluate WAWA’s IR system, we built a home-page finder agent by using
WAWA’s advice language. We chose the task of building a home-page finder
because of an existing system named AHOY! [39], which provides a valuable
benchmark. Ahoy! uses a technique called Dynamic Reference Sifting, which
filters the output of several Web indices and generates new guesses for URLs when
no promising candidates are found.
 For our home-page finder, we wrote a simple interface layered on top of
WAWA-IR. Then, by using our advice language’s variables, we wrote 76 general
advice rules related to home-page finding, many of which are slight variants of
others (e.g., with and without middle names or initials).6 Specializing WAWA-IR
for this task and creating the initial general advice took only one day, plus we
spent parts of another 2-3 days tinkering with the advice using 100 examples of a
“training set” that we describe below. This step allowed us to manually refine our
advice – a process, which we expect will be typical of future users of WAWA-IR.

To run experiments that evaluate WAWA-IR, we randomly selected 215 people
from Aha’s list of machine learning (ML) and case-based reasoning (CBR)
researchers (www.aic.nrl.navy.mil/~aha/people.html).7 Table 3 lists the best
performance of WAWA-IR’s home-page finder and the results from AHOY!, and
two different HOTBOT versions. The first HOTBOT version performs the engine’s
specialized search for people; we use the name given on Aha's page for these
queries. In the second HOTBOT version, we provide the search engine with a
general-purpose disjunctive query, which contains the person's last name as a
required word, and all the likely variants of the person's first name. The latter is
the same query that WAWA-IR initially sends to five of its search engines (namely,
ALTAVISTA, EXCITE, INFOSEEK, LYCOS, and YAHOO). For our experiments, we
only look at the first 100 pages that HOTBOT returns and assume that few people
would look further into the results returned by a search engine. Besides reporting
the percentage of the 100 test set home-pages found, we report the average ordinal
position (i.e., rank) given that a page is found, since WAWA-IR, AHOY!, and
HOTBOT all return sorted lists.

Table 3. Empirical Results: WAWA-IR vs AHOY! and HOTBOT

System % Found Mean Rank
Given Page Was Found

WAWA-IR with 76 advice rules 92% 1.3
AHOY! 79% 1.4

HOTBOT person search 66% 12.0
HOTBOT general search 44% 15.4

These results provide strong evidence that the version of WAWA-IR, specialized

into a home-page finder by adding simple advice, produces a better home-page

6 The complete list of these advice rules appears in Eliassi-Rad [10].
7 See Eliassi-Rad and Shavlik [10] for full description of our methodology and other
results.

finder than does the proprietary people-finder created by HOTBOT or by AHOY!.
The difference (in percentage of home-pages found) between WAWA-IR and
HOTBOT in this experiment is statistically significant at the 99% confidence level.
The difference between WAWA-IR and AHOY! is statistically significant at the
90% confidence level. These results illustrate that we can build an effective agent
for a web-based task quickly.

The above experiments were performed in 1998, at which time GOOGLE did not
exist publicly. To compare our IR system with GOOGLE, we ran new experiments
with our home page finder in 2001. Table 4 compares the best performances of
WAWA-IR’s home page finder seeded with and without GOOGLE to the results
from GOOGLE (run by itself). The WAWA-IR experiment seeded without GOOGLE
uses the following search engines: AltaVista, Excite, InfoSeek, Lycos, and Teoma.
For these experiments, we trained the WAWA-IR agent with reinforcement
learning, supervised learning, and all 76 home-page finding advice rules.

Table 4. Empirical Results: Two Different WAWA-IR Agents vs GOOGLE

System % Found Mean Rank ± Variance
Given Page Was Found

WAWA-IR with GOOGLE 96% 1.12 ± 0.15
GOOGLE 95% 2.01 ± 16.64

WAWA-IR without GOOGLE 91% 1.14 ± 0.15

WAWA-IR seeded with GOOGLE is able to slightly improve on GOOGLE’s
performance by finding 96 of the 100 pages in the test set. WAWA-IR seeded
without GOOGLE is not able to find more home pages than GOOGLE because the
aggregate of the five search engines used is not as accurate as GOOGLE. In
particular, GOOGLE appears to be quite good at finding home pages due to its
PageRank scoring function, which globally ranks a Web page based on its
location in the Web’s graph structure and not on the page’s content [4].

WAWA-IR experiments seeded with and without GOOGLE have the advantage of
having a lower mean rank and variance than GOOGLE. We attribute this difference
to WAWA-IR’s learning ability, which is able to bump home pages to the top of
the list. Finally, this set of experiments show how WAWA-IR can be used to
personalize search engines by reorganizing the results they return as well as
searching for nearby pages that score high.

3.3 Other IR Learners

Like WAWA, Syskill and Webert [30], and WebWatcher [18] are Web agents that
use machine learning techniques. They, respectively, use a Bayesian classifier and
a reinforcement learning -- TFIDF hybrid to learn about interesting Web pages and
hyperlinks. Unlike WAWA, these systems are unable to accept (and refine) advice,
which usually is simple to provide and can lead to better learning than rating or
manually visiting many Web pages.
 Drummond et al. [9] have created a system which assists users browsing
software libraries. Their system learns unobtrusively by observing users’ actions.

Letizia [21] is a system similar to Drummond et al.’s that uses lookahead search
from the current location in the user’s Web browser. Compared to WAWA,
Drummond’s system and Letizia are at a disadvantage since they cannot take
advantage of advice given by the user.
 WebFoot [42] is a system similar to WAWA, which uses HTML page-layout
information to divide a Web page into segments of text. WAWA uses these
segments to create an expressive advice language and extract input features for its
neural networks. WebFoot, on the other hand, utilizes these segments to extract
information from Web pages. Also, unlike WAWA, WebFoot only learns via
supervised learning.
 CORA [24] is a domain-specific search engine on computer science research
papers. Like WAWA, it uses reinforcement-learning techniques to efficiently
spider the Web [32]. CORA’s reinforcement learner is trained off-line on a set of
documents and hyperlinks which enables its Q-function to be learned via dynamic
programming since both the reward function and the state transition function are
known. WAWA’s training, on the other hand, is done on-line. WAWA uses
temporal-difference methods to evaluate the reward of following a hyperlink. In
addition, WAWA’s reinforcement-learner automatically generates its own training
examples and is able to accept and refine user’s advice. CORA’s reinforcement-
learner is unable to perform either of these two actions. To classify text, CORA
uses naive Bayes in combination with the EM algorithm [8], and the statistical
technique “shrinkage” [22,23]. Again, unlike WAWA, CORA’s text classifier
learns only through training examples and cannot accept and refine advice.

4 Extracting Information from the Web
Information extraction (IE) is the process of pulling desired pieces of information
out of a document, such as the author of an article. Unfortunately, building an IE
learners requires either a large number of annotated examples8 or an expert to
provide sufficient (and correct) knowledge about the domain of interest. Both of
these requirements make it time-consuming and difficult to build an IE system.
Similar to the IR case, we use WAWA's theory-refinement mechanism to build an
IE system, namely WAWA-IE. By using theory refinement, we are able to strike a
balance between needing a large number of labeled examples and having a
complete (and correct) set of domain knowledge.
 This section describes WAWA-IE, experimental results on WAWA-IE, and some
other recently developed IE learners.

4.1 WAWA-IE

WAWA-IE takes advantage of the intuition that IR and IE are nearly inverse
problems of each other. We illustrate this intuition with an example. Assume we
have access to an effective home-page finder, which takes as input a person’s

8 By annotated examples, we mean the result of the tedious process of reading the training
documents and tagging each extraction by hand.

name and returns her home page. The inverse of such an IR system is an IE
system that takes in home pages and returns the names of the people to whom the
pages belong. By using a generate-and-test approach to information extraction,
we are able to utilize what is essentially an IR system to address the IE task. In
the generate step, the user first specifies the slots to be filled (along with their
part-of-speech tags or parse structures), and WAWA-IE generates a large list of
candidate extractions from the document. Each entry in this list of candidate
extractions is one complete set of slot fillers for the user-defined extraction
template. In the test step, WAWA-IE scores each possible entry in the list of
candidate extractions. The candidates that produce scores that are greater than a
system-defined threshold are returned as the extracted information. A critical
component of WAWA-IE is an intelligent selector that eliminates the need to create
an exhaustive list of all possible candidate bindings.

The first step WAWA-IE takes (both during training and after) is to generate all
possible fillers for each individual slot for a given document. Fillers can be
individual words or phrases. Individual words are collected by using Brill’s
tagger [3], which annotates each word in a document with its part-of-speech tag.
For each slot, we collect every word in the document that has a POS tag that
matches a tag assigned to this variable somewhere in the IE task’s advice. For
cases where a variable is associated with a phrase, we apply a sentence analyzer
called Sundance [33] to each document. We then collect those phrases that match
the specified parse structure for the extraction slot and also generate all possible
subphrases of consecutive words (since Sundance only performs a crude shallow
parsing).

At this point, we typically have lengthy lists of candidate fillers for each slot,
and we need to focus on generating good combinations that fill all the slots.
Obviously, this process can be combinatorially demanding. To reduce this
computational complexity, WAWA-IE contains several methods (called selectors)
for creating complete assignments to the slots from the lists of individual slot
bindings. WAWA-IE’s selectors range from suboptimal and cheap (like simple
random sampling from each individual list) to optimal and expensive (like
exhaustively producing all possible combinations of the individual slot fillers).
Among its heuristically inclined selectors, WAWA-IE has a modified WalkSAT
algorithm [37], a modified GSAT algorithm [37], a hill-climbing algorithm with
random restarts [35], and a statistically-oriented selector [10].

In our modified WalkSAT algorithm, we build the list of combination-slots
candidate extractions for a document by randomly selecting an item from each
extraction slot’s list of individual-slot candidates. This produces a combination-
slots candidate extraction that contains a candidate filler for each slot in the
template. If the score produced by the SCOREPAGE network is high enough (i.e.,
over 9 on a -10 to 10 scale) for this set of variable bindings, then we add this
combination to the list of combination-slots candidates. Otherwise, we repeatedly
and randomly select a slot in the template. Then, with probability p, we randomly
select a candidate for the selected slot and add the resulting combination-slots
candidate to the list of combination-slots candidates. With probability 1-p, we
iterate over all possible candidates for this slot and add the candidate that

produces the highest network score for the document to the list of combination-
slots candidates.9

To build a WAWA-IE agent, the user provides the following information:
1. The set of on-line documents from which the information is to be extracted.
2. The extraction slots like speaker names, etc.
3. The possible part-of-speech (POS) tags (e.g., noun, verb, etc) or the parse

structures (e.g., noun phrase, verb phrase, etc) for each extraction slot.
4. A set of advice rules containing variables which refer to the extraction slots.10
5. A set of annotated examples, i.e., training documents in which extraction slots

have been marked by hand.
In one of our case studies, we want to extract names of proteins and their
subcellular locations from the yeast database of Ray and Craven [31]. One of our
advice rules for this task is: When the phrase “?ProteinName/Nphrase •/Vphrase
?LocationName/Nphrase” appears in the document, then score it very high. The
variables ?ProteinName and ?LocationName represent the protein names and their
subcellular structures. The “/Nphrase” trailing the variables indicates the required
parse structure of the variables (“Nphrase” refers to a noun phrase). The
“•/Vphrase” matches any verb phrase. The precondition of this rule matches
phrases such as “UBC6 localizes to the endoplasmic reticulum.”

Figure 3a shows the process of building a trained IE agent. Since (usually) only
positive training examples are provided in IE domains, we first need to generate
some negative training examples. To this end, we run the training documents
through the candidate generator and selector described above. In this step, the
heuristic used in the candidate selector scores each possible training extraction on
the untrained SCOREPAGE network. By untrained, we mean a network containing
only compiled (initial) advice and without any further training via
backpropagation and labeled examples. The effect of using the untrained
SCOREPAGE network is that the generated list contains informative negative
examples (i.e., near misses). This is due to the fact that the user-provided prior
knowledge rates these “near miss” training extractions highly (as if they were true
extractions).

After the negative examples are collected, we train the SCOREPAGE neural
network using these negative examples and all the provided positive examples.
By training the network to recognize (i.e., produce a high output score for) a
correct extraction in the context of the document as a whole [41], we are able to
take advantage of the global layout of the information available in the documents
of interest.

Figure 3b depicts the steps a trained IE agent takes to produce extractions. For
each entry in the list of combination-slots extraction candidates, we first bind the
variables to their candidate values. Then, we perform a forward propagation on
the trained SCOREPAGE network and output the score of the network for the test
document based on the candidate bindings. If the output value of the network is

9 See Eliassi-Rad [10] for complete details on all the selectors.
10 Actually, the user does not have to explicitly provide the extraction slots and their POS
tags separately from advice since they can be extracted from the advice rules.

greater than the system-defined threshold,11 we record the bindings as an
extraction. Otherwise, these bindings are discarded.

Extractions

Prior
Knowledge

Training
Set

List of Candidate
Extractions

Candidate Generator &
Selector

Slots
& Their

Syntactical
Info

Test Set
(Unseen
Docs)

Trained network is
placed in agent’s
knowledge-base.)

ScorePage

Candidate Generator &
Selector

List of Candidate
Extractions

Slots
& Their

Syntactical
Info

4

W
lo
R
a
b
e
R
“
p

su
y
n

P
n

11

S
12
(a
Fig. 3. (a) Building a Trained IE agent (

.2 WAWA-IE: An Experimental Study

e evaluate WAWA-IE on a task involving ex
cations within the cell from the yeast prote
ay and Craven [31]. 12 This domain is a coll
rticles on yeast. In this study, the fillers for e
ecause a single abstract can contain multiple
ach document, a single list of <protein, locati
ay and Craven’s methodology for our experi
tuple-level” method for measuring accuracy
rotein and its location).
WAWA-IE is given 12 advice rules in BNF
bcellular location. None of the advice rules

east data set in mind. It took us about half a
ot manually refine these rules over time.
 For our information measures, we use pre
recision (P) is the ratio of the number of c
umber of fillers extracted, and recall (R) is

 During training, WAWA-IE computes a task-speci
COREPAGE network by analyzing results on some “
 See Eliassi-Rad [10] for experimental details on t
(b)
b) Testing a

traction of
in-localizati
ection of ab
xtraction slo
 proteins an
on> pairs is
ments on thi
 (where a tu

[1] notation
 are written
 day to writ

cision, reca
orrect filler

 the ratio o

fic threshold
tuning” exam
wo other IE d
Trained
IE Agent
IE Agent
 Trained IE Agent

protein names and their
on domain produced by
stracts from biomedical
ts depend on each other
d locations. Hence, for
 extracted. We followed
s domain and used their
ple is an instance of a

 about a protein and its
with the specifics of the
e these rules and we did

ll, and the F1-measure.
s extracted to the total
f the number of correct

on the output of the
ples.
omains.

fillers extracted to the total number of fillers in correct extraction slots [46]. An
ideal system has a precision and recall of 100%. The commonly used F1-measure
combines precision and recall using the following formula:

F1 = (2 × Precision × Recall) / (Precision + Recall)
The F1-measure is more versatile than either precision or recall for explaining

relative performance of different systems, since it takes into account the inherent
tradeoff that exists between precision and recall.

Ray and Craven [31] split the yeast data set into five disjoint sets and ran 5-fold
cross-validation for their experiments. We use the same folds with WAWA-IE and
compare our results to theirs. Figure 4 illustrates the difference in the test-set F1-
measure between our modified WalkSAT selector and the exhaustive candidate
selector (where all possible negative exampls are used). The horizontal axis
depicts the percentage of negative training examples used during the learning
process, and the vertical axis depicts the F1-measure of the trained IE-agent on the
test set. WAWA-IE is able to achieve very good performance by using less than
20% of the negative training candidates, which demonstrates that we can
intelligently select good training examples (and, hence, reduce training time).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

% of negative training candidates used

Trained without a selector

Trained with WSAT

0 20 40 60 80 100

F1-measure

Fig. 4. F

1
-measure on the Test Set vs. Percentage of Negative Training Candidates

Used for Different Selector Algorithms

In F
1
-measures, WAWA-IE’s trained agents outperform the untrained agents by

approximately 50% (results not shown). This further demonstrates that WAWA-IE
is able to refine initial advice.

Figure 5 shows the precision and recall curves for (a)WAWA-IE’s trained agent
with the modified WalkSAT selector (using 17% of the negative examples), (b)
WAWA-IE’s trained agent without a selector (i.e., using all the negative training
examples), and (c) the system of Ray and Craven.

0.0

0.2

0.4

0.6

0.8

1.0
Precision

Recall

Trained IE Agent
with WSAT

Ray & Craven

0.0 0.2 0.4 0.6 0.8 1.0

Trained IE Agent
Without a Selector

Fig. 5. Precision/Recall Curves

The trained IE agent without any selector algorithm produces the best results.
But it is computationally very expensive, since it needs to take the cross-product
of all entries in the lists of individual-slot candidates. The trained IE agent with
modified WalkSAT selector performs quite well, still outperforming Ray and
Craven’s system.

Our results both illustrate the value of using theory refinement for IE and justify
using an intelligent candidate-selection algorithm to reduce the computational
burden of our “IE via IR” approach, which uses a computationally demanding
generate-and-test strategy. WAWA-IE with the “modified WalkSAT” selector is
able to improve on the state of the art using only 17% of the possible negative
training candidates during training. Finally, recall that we also use our variant of
WalkSAT during testing. Thus, Figure 5 also shows that we obtain good precision
and recall without needing to exhaustively score every possible candidate.

4.3 Other IE Learners

We were able to find only one other system in the literature that applies theory
refinement to the IE problem. Feldman et al.’s IE system [11] takes a set of
approximate IE rules and uses training examples to incrementally revise the
inaccuracies in the initial rules. Their revision algorithm uses heuristics to find the
place and type of revision that should be performed. Unlike WAWA-IE’s advice
rules, their IE rules provide advice on how to refine existing rules. Also, their
system manipulates IE rules directly, whereas WAWA-IE compiles rules into
neural networks and uses standard neural training to refine the rules. Finally, their
approach is to suggest possible revisions to the human user, whereas WAWA-IE’s
approach is to make the revisions automatically.

Most IE systems break down into two groups. The first group uses some kind of
relational learning to learn extraction patterns [5,14,43]. The second group learns
parameters of hidden Markov models (HMMs) and uses the HMMs to extract

information [2,15,20,31,38]. Recently, Freitag and Kushmerick [16] combined
wrapper induction techniques [19] with the AdaBoost algorithm [36] to create an
extraction system named BWI (short for Boosted Wrapper Induction). Their
system out-performed many of the relational learners and was competitive with
systems using HMMs and WAWA-IE.

Leek [20] uses HMMs for extracting information from biomedical text. His
system uses a lot of initial knowledge to build the HMM model before using the
training data to learn the parameters of HMM. However, his system is not able to
refine the knowledge.

Several authors use statistical methods to reduce the need for a lot of training
examples. Freitag and McCallum [15] use HMMs to extract information from
text. They employ a statistical technique called “shrinkage” to get around the
problem of not having sufficient labeled examples. Seymore et al. [38] also use
HMMs to extract information from on-line text. They get around the problem of
not having sufficient training data by using data that is labeled for another purpose
in their system. Similarly, Craven and Kumlien [6] use “weakly” labeled training
data to reduce the need for labeled training examples.
 One advantage of our system is that we are able to utilize prior knowledge,
which reduces the need for a large number of labeled training examples.
However, we do not depend on the initial knowledge being 100% correct. We
believe that it is relatively easy for users to articulate some useful domain-specific
advice (especially when a user-friendly interface is provided that converts their
advice into the specifics of WAWA’s advice language). The second advantage of
our system is that the entire content of the document is used to estimate the
correctness of a candidate extraction. This allows us to learn about the extraction
slots and the documents in which they appear. The third advantage of WAWA-IE
is that we are able to utilize the untrained SCOREPAGE network to produce some
informative negative training examples (i.e., near misses).

5 Future Directions
In order to better understand what people would like to say to an instructable Web
agent (such as WAWA) and improve our advice language accordingly, we need to
build more personalized and easily customized intelligent Web agents.

We would like to embed WAWA into a major, existing Web browser, thereby
minimizing new interface features that users must learn in order to interact with
our system. Related to this, we would like to develop methods whereby WAWA
can automatically infer plausible training examples by observing users’ normal
use of their browsers [17].

In our IE domains, we would like to incorporate the candidate generation and
selection steps directly into our connectionist framework, whereby we would use
the current SCOREPAGE network to find new candidate extractions during the
training process. Finally, an interesting area of research would be to explore
theory-refinement techniques on different supervised learning algorithms (such as
support vector machines [7], HMMs, and relational learners).

6 Conclusion
We argue that a promising way to create useful intelligent agents is to involve
both the user’s ability to do direct programming (i.e., provide approximately
correct instructions of some sort), along with the agent’s ability to accept and
automatically create training examples. Due to the largely unstructured nature and
the size of the Web, such a hybrid approach is more appealing than ones solely
based on either non-adaptive agent programming languages or users that rate or
mark the desired extractions from a large number of Web pages.

WAWA utilizes the user’s knowledge about the task at hand to build agents that
retrieve and extract information. Three important characteristics of WAWA’s
agents are (i) their ability to receive instructions and refine their knowledge-bases
through learning (hence, the instructions provided by the user need not be
perfectly correct), (ii) their ability to receive the user’s advice continually, and (iii)
their ability to create informative training examples.

We first present and evaluate WAWA’s information-retrieval system, which
provides an appealing approach for creating personalized information-finding
agents for the Web. A central aspect of our design is that a machine learner is at
the core. Users create specialized agents by articulating their interests in our
advice language. WAWA-IR compiles these instructions into neural networks,
thereby allowing for subsequent refinement. The system both creates its own
training examples (via reinforcement learning) and allows for supervised training
should the user wish to rate the information a WAWA-IR agent finds. This process
of continuous learning makes WAWA-IR agents (self) adaptive. Our “home-page
finder” case study demonstrates that we can build an effective agent for a web-
based task quickly.

We also describe and evaluate a system for using theory refinement to perform
information extraction. WAWA’s information-extraction system uses a neural
network, which accepts advice containing variables, to rate candidate variable
bindings in the content of the document as a whole. Our extraction process first
generates a large set of candidate variable bindings for each slot, then selects a
subset of the possible slot bindings via heuristic search, and finally uses the
trained network to judge which are “best.” Those bindings that score higher than a
system-computed threshold are returned as the extracted information. By using
theory refinement, we are able to take advantage of prior knowledge in the domain
of interest and produce some informative training examples, both of which lead to
an increase in the performance of the IE agent. Our experiments on the Yeast
protein-localization domain illustrates that we are able to compete with state-of-
the-systems. Also, we empirically show the benefits of using intelligent
algorithms for selecting possible candidates for multiple slots.

We also briefly reviewed other approaches to the IR and IE tasks that are based
on machine learning techniques. These systems, including ours, demonstrate the
promise of using machine learning to make sense of the vast resourses that is the
World-Wide Web.

References
1. Aho A., Sethi R., Ullman, J. (1986). Compilers, Principles, Techniques and

Tools, Addison Wesley.
2. Bikel D., Schwartz R., Weischedel R. (1999). An Algorithm That Learns

What's in a Name, Machine Learning: Special Issue on Natural Language
Learning, 34, 211–231.

3. Brill E. (1994). Some advances in rule-based part of speech tagging, Proc. of
AAAI-94 Conference, 722–727.

4. Brin S., Page L. (1998). The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30, 107-117.

5. Califf M.E. (1998). Relational Learning Techniques for Natural Language
Information Extraction. Ph.D. Thesis, Department of Computer Sciences,
University of Texas, Austin, TX.

6. Craven M., Kumlien J. (1999). Constructing biological knowledge-bases by
extracting information from text sources, Proc. of ISMB-99, 77–86.

7. Cristianini N., Shawe-Taylor J. (2000). An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge University
Press.

8. Dempster A., Laird N., Rubin D. (1977). Maximum Likelihood from
Incomplete Data via the EM Algorithm, Journal of the Royal Statistical
Society, 39, 1–38.

9. Drummond C., Ionescu D., Holte R. (1995). A learning agent that assists the
browsing of software libraries, Technical Report TR-95-12, University of
Ottawa, Ottawa, Canada.

10. Eliassi-Rad T., (2001). Building Intelligent Agents that Learn to Retrieve and
Extract Information, Ph.D. Thesis, Computer Sciences Department.
University of Wisconsin, Madison, WI.

11. Eliassi-Rad T., Shavlik J. (2001). A system for building intelligent agents that
learn to retrieve and extract information, Appears in the International Journal
on User Modeling and User-Adapted Interaction, Special Issue on User
Modeling and Intelligent Agents.

12. Eliassi-Rad T., Shavlik J. (2001). A theory-refinement approach to
information extraction. Proc. of ICML-01 Conference, 130–137.

13. Feldman R., Liberzon Y., Rosenfeld B., Schler J., Stoppi J. (2000). A
framework for specifying explicit bias for revision of approximate
information extraction rules. Proc. Of KDD-00 Conference, 189–197.

14. Freitag D. (1998). Machine Learning for Information Extraction in Informal
Domains, Ph.D. thesis, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA.

15. Freitag D., McCallum A. (1999). Information extraction with HMMs and
shrinkage, Workshop Notes of AAAI-99 Conference on Machine Learning for
Information Extraction, 31–36.

16. Freitag D., Kushmerick N. (2000). Boosted wrapper induction, Proc. AAAI-00
Conference, 577–583.

17. Goecks J., Shavlik J. (2000). Learning users' interests by unobtrusively
observing their normal behavior, Proc. of IUI-2000, 129–132.

18. Joachims T., Freitag D., Mitchell T. (1997). WebWatcher: A tour guide for
the World Wide Web, Proc. of IJCAI-97 Conference, 770–775.

19. Kushmerick N. (2000). Wrapper Induction: Efficiency and expressiveness,
Artificial Intelligence, 118, 15–68.

20. Leek T., (1997). Information Extraction Using Hidden Markov Models,
Masters Thesis, Department of Computer Science & Engineering, University
of California, San Diego.

21. Lieberman H. (1995). Letzia: An agent that assists Web browsing, Proc. of
IJCAI-95 Conference, 924–929.

22. McCallum A., Rosenfeld R., Mitchell T. (1998). Improving text classification
by shrinkage in a hierarchy of classes, Proc. of ICML-98 Conference, 359–
367.

23. McCallum A., Nigam K. (1998). A comparison of event models for naive
Bayes text classification, Workshop Notes of AAAI-98 Conference on
Learning for Text Categorization, 41–48.

24. McCallum A., Nigam K., Rennie J., Seymore K. (1999c). Building domain-
specific search engines with machine learning techniques, AAAI-99 Spring
Symposium, Stanford University, CA, 28–39.

25. Maclin R., Shavlik, J. (1996). Creating Advice-Taking Reinforcement
Learners, Machine Learning, 22, 251–281.

26. Mitchell T. (1997). Machine Learning, McGraw-Hill.
27. National Library of Medicine (2001). The MEDLINE Database,

http://www.ncbi.nlm.nih.gov/PubMed/.
28. Ourston D., Mooney R. (1994). Theory Refinement: Combining Analytical

and Empirical Methods. Artificial Intelligence, 66, 273–309.
29. Pazzani M., Kibler D. (1992). The Utility of Knowledge in Inductive

Learning. Machine Learning, 9, 57–94.
30. Pazzani M., Muramatsu J., Billsus D., (1996). Syskill & Webert: Identifying

interesting Web sites. Proc. of AAAI-96 Conference, 54–61.
31. Ray S., Craven M. (2001). Representing sentence structure in hidden Markov

models for information extraction, Proc. of IJCAI-01 Conference.
32. Rennie J., McCallum A. (1999). Using reinforcement learning to spider the

Web efficiently, Proc. of ICML-99 Conference.

33. Riloff E. (1998). The Sundance Sentence Analyzer,
http://www.cs.utah.edu/projects/nlp/.

34. Rumelhart D., Hinton G., Williams R. (1986). Learning internal
representations by error propagation. In: D. Rumelhart and J. McClelland
(eds.), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1. MIT Press, 318–363.

35. Russell S., Norvig P. (1995). Artificial Intelligence: A Modern Approach,
Prentice Hall.

36. Schapire R., Singer Y. (1998). Improved boosting algorithms using
confidence-rated predictions, Proc. COLT-98 Conference.

37. Selman B., Kautz H., Cohen B. (1996). Local Search Strategies for
Satisfiability Testing. DIMACS Series in Discrete Mathematics and
Theoretical CS, 26, 521–531.

38. Seymore K., McCallum A., Rosenfeld R. (1999). Learning hidden Markov
model structure for information extraction Workshop Notes of AAAI-99
Conference on Machine Learning for Information Extraction, 37–42.

39. Shakes J., Langheinrich M., Etzioni O. (1997). Dynamic reference sifting: A
case stury in the homepage domain, Proc. of WWW-97 Conference, 189–200.

40. Shavlik J., Eliassi-Rad T. (1998). Intelligent agents for web-based tasks: An
advice-taking approach, Workshop Notes of AAAI-98 Conference on Learning
for Text Categorization, Madison, WI, 63–70.

41. Shavlik J., Calcari S., Eliassi-Rad T., Solock J. (1999). An instructable,
adaptive interface for discovering and monitoring information on the World-
Wide Web, Proc. of IUI-99 Conference, 157–160.

42. Soderland S. (1997). Learning to extract text-based information from the
World Wide Web, Proc. of KDD-97 Conference, 251–254.

43. Soderland S. (1999). Learning Information Extraction Rules for Semi-
Structured and Free Text, Machine Learning: Special Issue on Natural
Language Learning, 34, 233–272.

44. Sutton R.S., Barto A.G. (1998). Reinforcement Learning, MIT Press.
45. Towell G.G., Shavlik J.W. (1994). Knowledge-Based Artificial Neural

Networks. Artificial Intelligence, 70, 119–165.
46. van Rijsbergen C.J. (1979). Information Retrieval, Buttersworths. 2nd edition.
47. Yang Y. (1999). An Evaluation of Statistical Approaches to Text

Categorization, Journal of Information Retrieval, 1, 67–88.

	1Introduction
	The Core of Wawa Agents
	
	
	
	Retrieving Information from the Web

	3.1Wawa-IR
	
	Independent Process #3

	3.2Wawa-IR: An Experimental Study
	3.3Other IR Learners
	4Extracting Information from the Web
	4.2Wawa-IE: An Experimental Study
	
	
	
	Future Directions

	6Conclusion

